Optical spectroscopy shows that the normal state of URu2Si2 is an anomalous Fermi liquid.
نویسندگان
چکیده
Fermi showed that, as a result of their quantum nature, electrons form a gas of particles whose temperature and density follow the so-called Fermi distribution. As shown by Landau, in a metal the electrons continue to act like free quantum mechanical particles with enhanced masses, despite their strong Coulomb interaction with each other and the positive background ions. This state of matter, the Landau-Fermi liquid, is recognized experimentally by an electrical resistivity that is proportional to the square of the absolute temperature plus a term proportional to the square of the frequency of the applied field. Calculations show that, if electron-electron scattering dominates the resistivity in a Landau-Fermi liquid, the ratio of the two terms, b, has the universal value of b = 4. We find that in the normal state of the heavy Fermion metal URu(2)Si(2), instead of the Fermi liquid value of 4, the coefficient b = 1 ± 0.1. This unexpected result implies that the electrons in this material are experiencing a unique scattering process. This scattering is intrinsic and we suggest that the uranium f electrons do not hybridize to form a coherent Fermi liquid but instead act like a dense array of elastic impurities, interacting incoherently with the charge carriers. This behavior is not restricted to URu(2)Si(2). Fermi liquid-like states with b ≠ 4 have been observed in a number of disparate systems, but the significance of this result has not been recognized.
منابع مشابه
Optical conductivity of URu2Si2 in the Kondo liquid and hidden-order phases
We measured the polarized optical conductivity of URu2Si2 from room temperature down to 5 K, covering the Kondo state, the coherent Kondo liquid regime, and the hidden-order phase. The normal state is characterized by an anisotropic behavior between the ab plane and c-axis responses. The ab-plane optical conductivity is strongly influenced by the formation of the coherent Kondo liquid: a sharp ...
متن کاملAnomalous normal-state properties of high-Tc superconductors: intrinsic properties of strongly correlated electron systems?
A systematic study of optical and transport properties of the Hubbard model, based on the Metzner-Vollhardt dynamical mean-field approximation, is reviewed. This model shows interesting anomalous properties that are, in our opinion, ubiquitous to single-band strongly correlated systems (for all spatial dimensions greater than one) and also compare qualitatively with many anomalous transport fea...
متن کاملExtremely correlated Fermi-liquid description of normal-state ARPES in cuprates.
The normal-state single particle spectral function of the high temperature superconducting cuprates, measured by the angle-resolved photoelectron spectroscopy (ARPES), has been considered both anomalous and crucial to understand. Here, we report an unprecedented success of the new extremely correlated Fermi liquid theory by one of us [B. S. Shastry, Phys. Rev. Lett. 107, 056403 (2011)] to descr...
متن کاملDirect observation of a Fermi liquid-like normal state in an iron-pnictide superconductor
There are two prerequisites for understanding high-temperature (high-Tc) superconductivity: identifying the pairing interaction and obtaining a correct description of the normal state from which superconductivity emerges. The nature of the normal state of iron-pnictide superconductors, and the role played by correlations arising from partially screened interactions, are still under debate. Here...
متن کاملArrested Kondo effect and hidden order in URu2Si2
Complex electronic matter shows subtle forms of selforganization, which are almost invisible to the available experimental tools. One prominent example is provided by the heavy-fermion material URu2Si2. At high temperature, the 5f electrons of uranium carry a very large entropy. This entropy is released at 17.5 K by means of a second-order phase transition1 to a state that remains shrouded in m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 47 شماره
صفحات -
تاریخ انتشار 2012